# Tagged With "acceleration"

Everything
Topic

#### Using a 33-45-78 Turntable to Show that Centripetal Acceleration is Proportional to the Square of the Velocity and Inversely Proportional to Radius

Rich ·
PocketLab in conjunction with a 33-45-78 RPM turntable is an ideal setup for studying centripetal acceleration. There are two videos that can be found in the Videos page of this web site. They show that (1) keeping radius constant implies that centripetal acceleration is proportional to the square of the velocity, (2) keeping velocity constant while varying the radius implies that centripetal acceleration is inversely proportional to the radius. The PocketLab is placed in its silicone...
Topic

#### PocketLab on an Oscillating Cart

Rich ·
An oscillating cart with a PocketLab provides an interesting way to study Newton's Second Law of Motion as well as some principles of damped harmonic motion. The apparatus setup is shown in the figure below. The small dynamics cart that can quickly be made from parts included in the PocketLab Maker Kit is shown in its equilibrium position. Rubber bands are attached to each side of the cart and to two ring stands weighted down with some heavy books. It is best to use rubber bands that provide...
Topic

#### PocketLab on a Skier's Edge Machine

Rich ·
The PocketLab is an ideal device for measuring user performance for a variety of exercise equipment. One example of such equipment is the Skier's Edge, whose company was founded in 1987. This machine was designed for non-impact lateral conditioning that simulates the experience of downhill skiing. The photo below shows the skiing machine. The skier stands on the two black platforms, holding poles and moves the carriage back-and-forth on the curved white tracks. A close-up view of the...
Topic

#### PocketLab Joins Ozobot to Study Position, Velocity and Acceleration Concepts

Rich ·
Ozobot ( ozobot.com ) is a tiny one inch diameter line-traveling robot that can be used in conjunction with PocketLab to easily study the physics concepts of position, velocity, and acceleration and their time graphs. PocketLab is simply taped to the top of an Ozobot using double-sided mounting tape. In other words, Ozobot gives Pocket lab a ride. The photo below shows this setup, with Ozobot following a 1/4" heavy black line drawn with a chisel tip marking pen. A magnetic ruler can be...
Topic

#### PocketLab Experiment on Centripetal Acceleration with a 3-speed Ceiling Fan

Rich ·
There are two approaches that the teacher can take to doing this experiment on centripetal acceleration with a three-speed ceiling fan and PocketLab. The first choice is for those with an available three-speed ceiling fan. In this case students can collect all data by actually performing the experiment themselves. The PocketLab should be mounted to one of the ceiling fan blades with a very strong double stick mounting tape. For safety, however, students should still wear goggles. The author...
Comment

#### Re: A Velocity Lab Experiment on Rolling Resistance

Robby ·
Thanks again for the great lesson, Rich!
Blog Post

#### A Velocity Lab Experiment on Rolling Resistance

Rich ·
Rolling resistance is a force that opposes the motion when an object rolls along a surface. In this experiment a coasting cylinder on a carpet gradually slows down and stops due to rolling resistance. The primary factor affecting rolling resistance here is deformation of the carpet as the cylinder rolls. Not all of the energy needed to deform the carpet is recovered when the pressure from the cylinder is removed. In other words, the effect is non-elastic. The purpose of this experiment is...
Blog Post

#### The Physics of a Falling and Unrolling TP Roll

Rich ·
Yes, that's right--the physics of a falling and unrolling toilet paper roll. This experiment will give students practice in rotational motion of an object and translational motion of its center-of-mass. It will also involve both the kinematics and dynamics of the motion. While it can be done by use of the VelocityLab app, interpretation of the angular velocity data from the PocketLab app is much easier. The figure below shows the apparatus setup for this lab experiment. A ring stand is on a...
Blog Post

#### Using VelocityLab in an AP/College Physics Experiment Involving Rotational Dynamics

Rich ·
This experiment is designed for AP Physics and college physics students. It considers a solid cylinder of mass M and radius R that is rolling down an incline with a height h without slipping. Using energy and dynamics concepts, students first derive equations for (1) the speed of the center of mass of the cylinder upon reaching the bottom of the incline, and (2) the acceleration of the center of mass of the cylinder as it rolls down the incline. The free-body diagram at the center shows all...
Blog Post

#### VelocityLab Investigation of Damped Harmonic Motion

Rich ·
This investigation shows how VelocityLab allows for a quick and easy demonstration of damped harmonic motion. The photo below shows the experiment setup as performed by the author. A jellied cranberry sauce can was selected as there is virtually no sloshing of the cranberry sauce as the can oscillates back-and-forth on a curved piece of laminate flooring. The center of the flooring is clamped down to the table with an adjustable wrench. The ends of the laminate flooring are raised a little...
Comment

#### Re: VelocityLab Investigation of Damped Harmonic Motion

Robby ·
Another great lesson, Rich! Thanks for contributing.
Comment

#### Re: Determining the Radius of Curvature of a Gradual Street Turn

Clif ·
Rich- this is such a great demo! I'm sorry the video sync output failed after the trials. We've got an app update coming soon that will fix the bug and update a few other features.
Blog Post